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Abstract After a brief introduction to the use of the idempotent Dirac first-order
density matrix (DM), its time-dependent generalization is considered. Special attention
is focused on the equation of motion for the time-dependent DM, which is character-
ized by the one-body potential V (r, t) of time-dependent density functional theory. It
is then shown how the force −∇V (r, t) can be extracted explicitly from this equation
of motion. Following a linear-response treatment in which a weak potential V (r, t)
is switched on to an initially uniform electron gas, the non-linear example of the
two-electron spin-compensated Moshinsky atom is a further focal point. We demon-
strate explicitly how the correlated DM for this model can be constructed from the
idempotent Dirac DM, in this time-dependent example.
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1 Background and outline

The origins of the present article concerned with idempotent first-order density
matrices (DM) can be traced back, at very least, to the work of Dirac [1] in the
early years of Schrödinger wave mechanics. Dirac’s aim was to introduce exchange
into the Thomas-Fermi statistical method (see for example [2]), forerunner of modern
density functional theory [3]. In this same context, a further major advance was made
by Slater [4] (see also [5]), who was concerned with a simplification of the Hartree-
Fock approximation. In particular, Slater proposed to replace the Fock operator by a
suitably chosen one-body potential energy V (r). Slater’s work on this quantity V (r)
was formally completed by Kohn and Sham [6]. Already, in his 1951 paper, to approx-
imate Vx (r), Slater appealed to Dirac’s single-particle (s) idempotent density matrix
[1] which is based on a single Slater determinant built form occupied orbitals φi (r):

γs(r, r′) =
N∑

i=1

φ∗
i (r)φi (r′), (1)

i is running from 1 to N in a system with N electrons, with diagonal density

n(r) = γs(r, r′)
∣∣
r′=r =

N∑

i=1

|φi (r)|2 . (2)

Slater invoked Dirac’s total exchange energy, denoted Ex below, calculated from such
a Slater determinant as (here and in the following we use atomic units)

Ex = −1

4

∫ ∫
γ 2

s (r, r′)
|r − r′| drdr′. (3)

Defining, though not uniquely, an exchange energy density

εx (r) = −1

4

∫
γ 2

s (r, r′)
|r − r′| dr. (4)

Slater proposed a definition of an approximate one-body exchange potential, denoted
below by V Sl

x (r) as

V Sl
x (r) = 2εx (r)

n(r)
, (5)

with n(r) the ground-state electron density. Subsequent work by one of us [7] proved
that in atoms, molecules and clusters sufficiently far from all nuclei

εx (r) → − 1

2r
n(r), (6)
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and hence from Eq. 5, V Sl
x (r) → −1/r as required for the correct self-interaction

correction.
Stimulated by the work of Kohn and Sham [6], it is now generally assumed that the

exact ground-state electron density n(r) of molecules and clusters can be reproduced
by a choice of one-body potential V (r) of the form

V (r) = Vext(r)+ VH (r)+ Vxc(r), (7)

with the external potential Vext(r) and Hartree potential VH (r). Unfortunately, the
exchange-correlation potential Vxc(r) in Eq. 7 is presently not known, and its exact
form constitutes a truly major theoretical problem.

However, given a potential V (r), the early study of March and Murray [8,9] gave
a perturbation theory to all orders in V (r) for the Dirac density matrix γs(r, r′) intro-
duced above, the unperturbed system being the homogeneous electron gas. Their result
has the form

γs(r, r′, E)− γ 0
s (r, r′, E) =

∞∑

i=1

γ i
s (r, r′, E), (8)

where γ i
s is o(V i ) and is given quite explicitly by March and Murray [9]. On the

diagonal r′ = r, they showed that the series in Eq. 8 could be summed to all orders in
V (r), yielding the Thomas-Fermi ground-state electron density nTF(r) as

nTF(r) = 8
1
2

3π2 [µ− V (r)] 3
2 , (9)

provided V (r) varies by but a fraction of itself over a spatial distance of order of
the de Broglie wavelength for an electron at the Fermi energy, equal to the chemical
potential µ entering Eq. 9. Thus, on the diagonal, Eq. 8 can be described as an exact
Thomas-Fermi method in perturbation theory [10].

Suppose now, in a true non-relativistic description of a N-electron molecule, the
normalized Schrödinger ground-state wave function (suppressing spin for notational
convenience) is�(r1, r2, . . . , rN ). The exact first-order density matrix (DM) γ (r, r′)
is defined (see for example [11]) as

γ (r, r′) = N
∫
�∗(r, r2, . . . , rN )�(r′, r2, . . . , rN ) dr2, . . . , drN , (10)

where obviously γ (r, r′)
∣∣
r′=r = n(r), the exact ground-state density of the N-electron

molecule under consideration.
Since the calculation of � for more than a few electrons continues to be a formi-

dable computational task, current trends are to focus on the Dirac idempotent matrix
γs(r, r′), rather than the correlated DM γ (r, r′), but with both these matrices having,
in principle, identical (and hopefully eventually exact!) ground-state density n(r).

Therefore, the central problem in density functional theory (DFT) [3] is the con-
struction of the one-body potential V (r) in Eq. 7. Then knowing n(r) the Hartree
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potential may be calculated, and all important is the remaining exchange-correlation
contribution Vxc(r). Presently this quantity remains unknown, though many approx-
imations exist for it. Perturbative procedures that are guaranteed to converge on the
exact form of Vxc(r) are also available [12–14]. In practice, however, going beyond the
exchange-only approximation involves already a high degree of numerical complexity.

The accuracy of a given approximation for Vxc can always be assessed a posteriori,
by comparison of some derived properties, like lattice constants or excitation energies,
against experiment. In order to improve on existing approximations, it would be highly
desirable to compare these approximations against exact or near-exact forms of Vxc

directly. Given that highly accurate calculations on correlated few-electron systems are
available nowadays, the question arises how this information may be used to extract
the one-body potential V (r) of DFT or V (r, t) of time-dependent DFT (TDDFT)
[15]. For the ground state theory, a numerical method to perform this task for arbitrary
many-electron systems has been proposed by Zhao, Morrison and Parr [16–18]. If
one confines oneself to the special case of spin-compensated two-electron systems
the procedure is (apart from numerical difficulties) even simpler: The exact electron
density is easily related to the single Kohn–Sham orbital of the system and inversion of
the Kohn–Sham equation yields the desired exchange correlation potential. This inver-
sion is possible both for stationary [19] as well as time-dependent [20,21] problems.
Although the mapping between densities and potentials is formally guaranteed even
for TDDFT [22], a practical realization of this relation beyond two-electron system
remains elusive.

Therefore, in the following Sects. 2 and 3 we shall report on how the one-
body potential V (r, t) might, at least in principle, become accessible via first-order
Dirac density matrices, without the need to resort to the determination of individual
Kohn–Sham states. An important question is then how these density matrices may
be obtained from correlated many-particle calculations. Section 4 explicitly addresses
this issue for the Moshinsky model and illustrates the relation between the correlated
and Dirac DM, which turns out to be surprisingly simple in the examined case. In all of
these investigations, we cover both the stationary and the more general time-dependent
case. A brief summary finally constitutes Sect. 5.

2 Force expressions and equation of motion for the Dirac density matrix

2.1 Stationary case

In early work on the Dirac density matrix, March and Young [23] obtained expres-
sions, in one dimension, for the force −∇V (r) in terms of γs , by expansion around
the diagonal. The three-dimensional generalization of their result reads

[
∇2

r − ∇2
r′
]
γs(r, r′) = 2

[
V (r)− V (r′)

]
γs(r, r′), (11)

which is readily verified by substituting Eq. 1 into the above equation, and then invok-
ing the Schrödinger equation for the orbitals φi (r) generated by the one-body potential
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V (r). Dividing both sides of Eq. 11 by γs and then applying the gradient operator yields
the force as

− ∇V (r) = −1

2
∇r

[(∇2
r − ∇2

r′
)
γs(r, r′)

γs(r, r′)

]
. (12)

2.2 Time-dependent case

Given one-electron wave functions φi (r, t) generated via the Schrödinger equation

[
−1

2
∇2 + V (r, t)

]
φi (r, t) = i

∂φi (r, t)

∂t
, (13)

from a chosen time-dependent potential V (r, t), the natural generalization of the Dirac
single-particle static density matrix is to write

γs(r, r′, t) =
N∑

i=1

φ∗
i (r, t)φi (r′, t). (14)

Then the generalization of the static equation of motion given in Eq. 11 is readily found
to be

[
V (r, t)− V (r′, t)

]
γs(r, r′, t) =

[
−i

∂

∂t
+ 1

2

(
∇2

r − ∇2
r′
)]
γs(r, r′, t) (15)

Dividing both sides in Eq. 15 by γs , one then can take the gradient of the resulting
equation to find the equation of motion for γs :

− ∇V (r, t) = i∇r
∂

∂t
ln γs(r, r′, t)− 1

2
∇r

[(∇2
r − ∇2

r′
)
γs(r, r′, t)

γs(r, r′, t)

]
, (16)

which is the desired generalization of the static force Eq. 12. The potential V (r, t) and
hence also Vxc(r, t) is now accessible by a path independent line integral similar to
the proceeding in [24]. We note that the resulting potential will in general depend on
the chosen initial state of the system under study [25–27].

3 Response function of the homogeneous electron gas (HEG)

3.1 Stationary case

The r space form of the linear response function of the HEG was obtained in the study
of March and Murray [8]. Writing the density change �n(r) = n(r) − n0 due to
switching on a potential V (r) to the HEG as
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�n(r) =
∫

F0(
∣∣r − r′∣∣)V (r′)dr′, (17)

the result of [8] was

F0(
∣∣r − r′∣∣) = − k2

f

2π3

j1(k f
∣∣r − r′∣∣)

|r − r′|2 . (18)

Here, j1(x) is the first-order spherical Bessel function (sin x − x cos x)/x2, k f being
the Fermi momentum of the HEG. The time-dependent generalization of their result
will be considered in Sect. 3.2 below. For a periodic (p) lattice, Stoddart, March and
Stott [28] have obtained an expression for the energy derivative of the response func-
tion F : namely ∂F/∂E . Their result requires the lattice Green function G p(r, r′, E)
as well as the Dirac density matrix γp, and takes the explicit form

∂Fp

∂E
= 2�

{
G p(r, r′, E)

∂γp(r, r′, E)

∂E

}
. (19)

Inserting free-electron forms for the Green function and the density matrix into Eq. 19
readily yields back Eq. 18 with k2

f /2 = E .

3.2 Time-dependent case

In this section we consider the scattering of free-electrons from a local and time-
dependent potential V (r, t) that is adiabatically turned on in the remote past. We
additionally assume that the potential is weak enough to apply linear response theory.
In Dirac notation the scattering states fulfill the time-dependent Schrödinger equation
in the following form

(
i
∂

∂t
− Ĥ0

)
|ψi , t〉 = V̂ (t)|ψi , t〉; Ĥ0 = p2

2
. (20)

Introducing the unperturbed free-particle states |φi , t〉, Eq. 20 may be equally well
written in integral form as the Lippmann–Schwinger equation (see e.g. [29])

|ψi , t〉 = |φi , t〉 +
∞∫

−∞
Ĝ(t, t ′)V̂ (t ′)|ψi , t ′〉 dt ′, (21)

where the retarded Green function Ĝ(t, t ′) is defined generally by

(
i
∂

∂t
− Ĥ

)
Ĝ(t, t ′) = δ(t − t ′), (22)
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with the boundary condition Ĝ(t, t ′) = 0 for t < t ′. The solution to Eq. 22 for arbitrary
Ĥ is known and takes the following form in the position representation

G(r, t, r′, t ′) = 〈r|Ĝ(t, t ′)|r′〉
= −i
(t − t ′)〈r|e−i Ĥ(t−t ′)|r′〉, (23)


(t −t ′) being the Heaviside step function. The Green function G(r, t, r′, t ′) is equiv-
alent to the propagator in Feynman’s path integral formulation of quantum mechanics
and can be easily evaluated for the free particle case at hand, where Ĥ = Ĥ0. The
result in three spatial dimensions reads [30]

G0(r, t, r′, t ′) = −i
(t − t ′)
[
2π i(t − t ′)

]− 3
2 exp

[
i |r − r′|2
2(t − t ′)

]
. (24)

In order to arrive at an expression for the time-dependent density n(r, t), we write the
Lippmann–Schwinger Eq. 21 in the position representation

ψi (r, t) = φi (r, t)+
∫ ∞∫

−∞
G0(r, t, r′, t ′)V (r′, t ′)ψi (r′, t ′) dr′dt ′, (25)

where we have used the locality of the potential. Here, the free particle states φi (r, t)
with wave vector ki are normalized to the volume �

φi (r, t) = 1√
�

exp

[
i

(
ki r − 1

2
k2t

)]
. (26)

Multiplying this equation by ψ∗
i (r, t) from the left and summing over all occupied

states i , the induced density change is obtained. Using Eq. 25 and working to linear
order in V (r, t), which is equivalent to the first-order Born approximation, we find

n(r, t)− n0 = 2�
⎧
⎨

⎩

∫ ∞∫

−∞
G0(r, t, r′, t ′)γ̃0(r, t, r′, t ′)

⎫
⎬

⎭ V (r′, t ′) dr′dt ′, (27)

with n0 = N/V and the generalized zero-order density matrix γ̃0 cf. Eq. 14

γ̃0(r, t, r′, t ′) =
N∑

i=1

φ∗
i (r, t)φi (r′, t ′), (28)

which implicitly depends on the energy (E = k2
f /2) of the highest occupied orbital

with wave vector kF .
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We are now in the position to define the time-dependent response function
F0(r, t, r′, t ′) according to

�n(r, t) = n(r, t)− n0

=
∫ ∞∫

−∞
F0(r, t, r′, t ′)V (r′, t ′) drdt ′, (29)

and observe that due to Eq. 24 its energy derivative may be written as

∂F0

∂E
= 2�

{
G0(r, t, r′, t ′)∂γ̃0(r, t, r′, t ′)

∂E

}
, (30)

which is precisely the form that was also found in the time-independent Eq. 19 of
Sect. 3. Further progress is made by evaluating the time-dependent Dirac density matrix
γ̃0(r, t, r′, t ′) of the unperturbed system. For � tending to infinity, the summation in
Eq. 28 may be replaced by an integration over energy which yields the following
somewhat complicated result

γ̃0(r, t, r′, t ′) = −4i

⎧
⎨

⎩
k f

π2(t − t ′)
j0(k f

∣∣r − r′∣∣) exp

[
i

2
(t − t ′)k2

f

]

− [2π i(t − t ′)
]− 3

2 exp

[
− i
∣∣r − r′∣∣2

2(t − t ′)

]

×
⎡

⎣erf

⎛

⎝
√

−i |r − r′|2
2(t − t ′)

(
1 + k f

(t − t ′)
|r − r′|

)⎞

⎠

− erf

⎛

⎝
√

−i |r − r′|2
2(t − t ′)

(
1 − k f

(t − t ′)
|r − r′|

)⎞

⎠

⎤

⎦

⎫
⎬

⎭ (31)

with j0(x) = sin(x)/x and where we define the error function as

erf(z) = 2√
π

z∫

0

exp(−t2)dt. (32)

This result can be shown, after some manipulations, to be equivalent to the earlier
solution of March and Tosi ([31], Eq. A9 of that publication) of the same problem,
who use a slightly different form of representation.

We now consider two limiting cases: For dilute electron gases—that is small k f —
the term k f (t − t ′)/

∣∣r − r′∣∣ tends to zero for detection far away from the scatterer and
fixed detection time. In this case the difference of the two error functions in Eq. 31
tends to zero. In the opposite limit of high densities, as in metals with typical Fermi
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velocities on the order of 106 m/s, the difference of the error functions is purely real,
since for real a, lima→∞ erf(

√
ia) = sgn(a). In both cases, therefore, combination

of Eqs. 24, 27, and 31 leads to the following simplified result for the time-dependent
generalization of the HEG response function (cf. Eq. 18)

F0(r, t, r′, t ′)≈
√

8

π(t − t ′)5
k f j0(k f

∣∣r − r′∣∣) cos

[∣∣r − r′∣∣2

2(t − t ′)
− (t − t ′)

2
k2

f +
π

4

]
,

(33)

while the exact solution can be easily evaluated along the same lines.
Taking advantage of the fact that the response function Eq. 33 is homogeneous

both in space and time we now consider the Fourier transform of the induced electron
density �n(r, t)

�n(q, ω) =
∫ ∫

�n(r, t) eiqre−iωt drdt, (34)

which allows us to extract the one-body potential from Eq. 29 by use of the convolution
theorem

V (q, ω) = �n(q, ω)
F0(q, ω)

, (35)

provided the density response is known. Solution of Eq. 35 requires the knowledge
of F0(q, ω) and it turns out that the analytical evaluation of the Fourier transform of
Eq. 33 (or even the exact result) is very demanding. Fortunately, F0(q, ω) has been
explicitely given by Lindhard already in the 1950s using a reciprocal space approach
[32,33]. This reduces the complexity of a numerical treatment of Eq. 35 that will in
general be necessary.

4 Correlated and idempotent density matrix of the Moshinsky atom

4.1 Stationary case

In this section, we illustrate the relation between correlated and idempotent density
matrices by the simple example of a spin-compensated two-electron atom with har-
monic confinement. This analytically solvable model was put forward by Moshinsky
[34] in the 1960s and is characterized by the following Hamiltonian:

Ĥ = −1

2

(
∇2

r1
+ ∇2

r2

)
+ 1

2
ω2

0

(
r2

1 + r2
2

)
+ 1

2
K (r1 − r2)

2. (36)
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The electron density for this system is found to be of Gaussian form (see for example
[35])

n(r) = 2
(µω0

π

)3/2
exp(−µω0r2), µ = 2

⎡

⎣1 +
(

1 + 2K

ω2
0

)−1/2
⎤

⎦
−1

, (37)

with the dimensionless parameter µ that tends to one as the interaction strength K
tends to zero. March [36] recently evaluated the model’s correlated first-order density
matrix and was able to express it entirely in terms of the electron density, thereby
explicitly confirming the first Hohenberg–Kohn theorem for this particular example.
His result reads

γ (r1, r2) = cγ

[
n

(√
r2

1 + r2
2

)]ν/µ
[n (|r1 + r2|)]η/µ with (38)

cγ =
[

2
(µω0

π

)3/2
]µ−ν−η

µ

, ν = 1

2(2 − µ)
, η = 1

4
(µ− 2ν) , (39)

where the constant cγ is also related to the density (at r = 0).
Now we would like to go one step further and relate the DM to the Dirac density

matrix γs with equal diagonal. In this spin-compensated two-electron example, there
is only one occupied single-particle orbital φ, which is therefore easily related to the
density (φ(r) = √

n(r)/2).
Taking advantage of this fact, we note that γs may be written as

γs(r1, r2) = n(r1)
1
2 n(r2)

1
2

= 2
(µω0

π

)3/2
exp
[
−µω0

2

(
r2

1 + r2
2

)]
. (40)

Comparing Eqs. 37, 38, and 40 we see that both γ and γs exhibit quadratic forms in
the exponentials so that we may set

γ (r1, r2) = γs(r′
1, r′

2), (41)

with yet to be determined r′
1, r′

2, that are linear in r1, r2. This surprisingly simple
result holds for all values of the interaction strength.

In principle, there is an infinite number of solutions for Eq. 41. We enforce a special
one by choosing the Ansatz:

r′
1 = a r1 + b r2

r′
2 = b r1 + a r2,

(42)
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with unknown constants a and b. Inserting Eq. 42 into Eq. 41, a comparison of coeffi-
cients leads to

µab = η (43)

µ(a − b)2 = 2ν, (44)

with one particular solution given by

a =
[
ν + η +√ν2 + 2νη

µ

] 1
2

b = η

µ

[
ν + η +√ν2 + 2νη

µ

]− 1
2

.

(45)

In the limit of vanishing interaction

lim
K→0

a = 1; lim
K→0

b = 0; ⇒ lim
K→0

γ (r1, r2) = γs(r1, r2), (46)

the correlated first-order density matrix equals the Dirac density matrix, as expected.

4.2 Time-dependent case

We now turn to generalizations of the results in Sect. 4.1. The time-dependent
Moshinsky model has already been studied earlier by the present authors [37] in the
wider scope of harmonically confined two-electron systems with general inter-particle
interaction u(r). The relevant Hamiltonian for this problem is given by

Ĥ = −1

2

(
∇2

r1
+ ∇2

r2

)
+ 1

2
ω2

0(t)
(

r2
1 + r2

2

)
+ u(|r1 − r2|). (47)

Separation into center-of-mass (cm) and relative-motion (rm) channels with respective
coordinates coordinates c = 1/2(r1 + r2) and b = (r1 − r2), leads to the following
equations of motion

i
∂

∂t
ψcm(c, t) =

[
− 1

2mcm
∇2

c + mcm
2 ω2

0(t)c
2
]
ψcm(c, t) (48)

i
∂

∂t
ψrm(b, t) =

[
− 1

2mrm
∇2

b + mrm

2
ω2

0(t)b
2 + u(b)

]
ψrm(b, t), (49)

with effective masses mcm = 2 and mrm = 1/2. The cm Schrödinger equation can
be solved analytically in three dimensions. For the special but non-trivial case of a
system initially in its ground-state at t = 0 we find the result (see also [20])
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ψcm(c, t)=
(

mcmφ̇cm(t)

π

)3/4

exp

[
−1

2
mcm

(
φ̇cm(t)− i

d ln |Xcm(t)|
dt

)
c2
]
, (50)

where the functions φcm(t) and Xcm(t) are determined by the solution of the classical
equation of motion

Ẍcm(t) = −ω2
0(t)Xcm(t)

Xcm(t) = |Xcm(t)|eiφcm(t).
(51)

The rm Schrödinger equation is in general difficult to solve for typical inter-particle
potentials, the Moshinsky model characterized by u(b) = 1

2 K b2 being an exception.
Here, the rm problem is seen to be isomorphic to the cm one and its solution is
given by

ψrm(b, t)=
(

mrmφ̇rm(t)

π

)3/4

exp

[
−1

2
mrm

(
φ̇rm(t)− i

d ln |Xrm(t)|
dt

)
b2
]
, (52)

with

Ẍrm(t) = −
(
ω2

0(t)+ K

mrm

)
Xrm(t)

Xrm(t) = |Xrm(t)|eiφrm(t). (53)

As a further result, we now continue to evaluate the exact time-dependent density
for the Moshinksy atom (initially in its ground-state) from

n(r, t) = 2
∫ ∣∣ψcm

(
(r + r′)/2, t

)
ψrm(r − r′, t)

∣∣2 dr′, (54)

After straightforward analytical quadrature the result takes the form

n(r, t) = 2

(
µ̃(t) φ̇cm(t)

π

)3/2

exp
(
−µ̃(t) φ̇cm(t) r2

)
, (55)

where the purely time-dependent function µ̃(t) is given by

µ̃(t) = 2φ̇rm(t)

φ̇cm(t)+ φ̇rm(t)
. (56)

The correlated density matrix for this time dependent problem as defined by

γ (r1, r2, t) = 2
∫
ψ∗(r1, r, t)ψ(r, r2, t) dr (57)
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with

ψ(r1, r2, t) = ψcm((r1 + r2)/2, t) ψrm(r1 − r2, t), (58)

is also available in closed form and reads

γ (r1, r2, t) = 2

(
µ̃(t) φ̇cm(t)

π

)3/2

exp
[
−ν̃(t) φ̇cm(t)

(
r2

1 + r2
2

)]

× exp
[
−η̃(t) φ̇cm(t) (r1 + r2)

2
]

exp
[
i δ(t)

(
r2

1 − r2
2

)]
, (59)

where the following abbreviations have been employed:

ν̃(t) = 1

4

(
φ̇cm(t)+ φ̇rm(t)

)2 + (d ln |Xrm(t)|/dt − d ln |Xcm(t)|/dt)2
(
φ̇cm(t)+ φ̇rm(t)

)
φ̇cm(t)

(60)

η̃(t) = 1

4
(µ̃(t)− 2ν̃(t)) (61)

δ(t) = −1

2

φ̇cm(t) (d ln |Xrm(t)|/dt)+ φ̇rm(t) (d ln |Xcm(t)|/dt)

φ̇cm(t)+ φ̇rm(t)
(62)

As evident from Eq. 59, the off diagonal elements of the correlated density matrix
acquire a phase in the time dependent treatment. This also holds for the Dirac DM,
which can be quite generally expressed as:

γs(r1, r2, t) = n(r1)
1
2 n(r2)

1
2 ei[ f (r2,t)− f (r1,t)]. (63)

The phase arguments f (r, t) are directly related to the Kohn–Sham current and hence
by means of the continuity equation also to the density [20]. We do not attempt to
evaluate these terms here, but focus rather on the modulus of the density matrices. If
we compare Eq. (55)/(59) with Eq. (37)/(38), we find that the time-dependent problem
is completely equivalent to the time-independent one, provided we identify φ̇cm(t)
with ω0 and replace the exponents µ, ν with µ̃(t), ν̃(t), respectively. Quite similar
to Sect. 4.1, the time-dependent first order density matrix γ (r1, r2, t) is then given in
terms of the Dirac density matrix γs(r1, r2, t)

|γ (r1, r2, t)| = |γs (a(t) r1 + b(t) r2, b(t) r1 + a(t) r2)| , (64)

with now time-dependent constants a(t) and b(t). Again, like in the static case, γ
equals γs for vanishing inter-particle interaction.

5 Summary and outlook

The aim of the present article has been to generalize known DFT results to apply
to TDDFT. Thus, we have established in Eq. 16 the result for the time-dependent
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force −∇V (r, t), where V (r, t) is the central tool in current usage of TDDFT. This
Eq. 16 is the generalization of the static analogue in Eq. 12 and involves the Dirac
density matrix γs(r1, r2, t) as central ingredient. For weak potentials, the diagonal of
γs(r1, r2, t) is sufficient to extract V (r, t). In Eq. 33, we report the explicit form of the
time-dependent non-interacting response function which relates these two quantities.

We have also been concerned here with the specific example of the Moshinsky
atom [34]. The central result is embodied in Eqs. 41 and 42 for the static limit, and in
the dynamic generalization set out in Eq. 64. It would, of course, be of major interest
for many-Fermion theory if it transpired that such relations between the correlated
density matrix γ (r, r′) and the single-particle Dirac density matrix γs(r, r′) turned
out to have more general applicability than for the Moshinsky model from which they
have emerged.
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